If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2-60x+160=0
a = 1; b = -60; c = +160;
Δ = b2-4ac
Δ = -602-4·1·160
Δ = 2960
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2960}=\sqrt{16*185}=\sqrt{16}*\sqrt{185}=4\sqrt{185}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-60)-4\sqrt{185}}{2*1}=\frac{60-4\sqrt{185}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-60)+4\sqrt{185}}{2*1}=\frac{60+4\sqrt{185}}{2} $
| 4(5p-6)-7p=6(2p-5) | | −k/9 =−1/3 | | -3u=-81 | | 14-46=4(x-1)-4 | | 15–(x+3)=-1+2(x–3) | | 5a-8+a=4a-1.5 | | 4=3-x/5 | | 15(x)=360 | | 3x-4+4=-2x5+5x | | 2x=3x | | n/4=7.4 | | 16y+4y-2+8=186 | | 2.4t^2-62t=0 | | 12x-15=392x+3) | | ¼x=17 | | -2.8=x/3 | | 9+6(x+2)=2(3x+7)+5 | | 56=1/3+d | | 1x+2+3x+4=4x+2 | | (5x+15)=20(2) | | 6/4=3/n-5 | | 3(w-10)=-9 | | 4q−15=1 | | 2r-14=20 | | 3a-6+2a-2=22 | | 12x+3=11x+1 | | (3x-5)/7=3x-4 | | (5x+15)=40 | | 7c=7c+2 | | 8+4x=11+3x | | 3(1-4k)=75 | | k+17=92 |